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We explore the sensitivity of the Higgs decay to four leptons, the so-called golden channel, to
higher dimensional loop-induced couplings of the Higgs boson to ZZ, Zγ, and γγ, allowing for
general CP mixtures. The larger standard model tree level coupling hZµZµ is the dominant “back-
ground” for the loop induced couplings. However this large background interferes with the smaller
loop induced couplings, enhancing the sensitivity. We perform a maximum likelihood analysis based
on analytic expressions of the fully differential decay width for h→ 4` (4` ≡ 2e2µ, 4e, 4µ) including
all interference effects. We find that the spectral shapes induced by Higgs couplings to photons
are particularly different than the hZµZµ background leading to enhanced sensitivity to these cou-
plings. We show that even if the h→ γγ and h→ 4` rates agree with that predicted by the Standard
Model, the golden channel has the potential to probe both the CP nature as well as the overall sign
of the Higgs coupling to photons well before the end of high-luminosity LHC running (∼3 ab−1).

I. INTRODUCTION

With the recent discovery of the Higgs boson at the
LHC [1, 2] the focus now shifts to the determination of
its detailed properties and in particular whether or not it
possesses any anomalous couplings not predicted by the
Standard Model (SM). The Higgs decay to electrons and
muons through electroweak gauge bosons, the so called
golden channel, has been well established as a means to-
wards accomplishing this goal. In particular it has been
shown in many studies that the golden channel is capa-
ble of probing the Higgs couplings to ZZ pairs including
the CP properties at the LHC [3–33]. This channel has
been used to determine that the Higgs to ZZ coupling
occurs dominantly through the hZµZµ operator [34] as
predicted by the SM, while not yet having strong sen-
sitivity to the loop induced ZZ couplings which occur
through the hZµνZ

µν and hZµνZ̃
µν operators.

Less emphasized is the fact that the h → 4` (4` ≡
2e2µ, 4e, 4µ) decay can in principal also be used to probe
the Higgs couplings to Zγ and γγ pairs [31, 32] (we do
not distinguish between on or off-shell vector bosons). It
is typically thought that these contributions are too small
to be detected in the golden channel since they only first
occur at loop level with the photon forced to be off-
shell. The search for these couplings is thus done solely
using the rates of the decays h→ Zγ and γγ respectively.

In this note we show that large differences in shapes
of the kinematic distributions allow for the possibility of
measuring these couplings in the golden channel even if
no significant deviations from the SM prediction are seen
in the overall decay rates of h→ γγ or h→ 4`. Further-
more, the various interference effects, in particular those
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with the tree level SM hZµZµ operator, also allow for
the CP properties of these couplings to be extracted. To
demonstrate this we treat the SM hZµZµ operator as a
‘background’ and perform a simple analysis to assess to
what extent the golden channel has or will have any sen-
sitivity to the various possible loop induced couplings of
the Higgs boson to not only ZZ, but also Zγ and γγ
pairs for values of couplings that are of the same order
as those predicted by the SM at one loop.

As we will see, the greatest sensitivity will turn out to
be for the γγ couplings. In fact we will show that the sen-
sitivity is strong enough that there are excellent prospects
for establishing the CP properties and overall sign of the
Higgs couplings to photons during LHC running. This
is particularly exciting because in order to measure the
CP properties of this coupling in the h → γγ decay one
would need to measure the polarization of the final state
photons at such energies [35]. Although there are recent
proposals for making such a measurement [35, 36] us-
ing photon pair conversions, they are experimentally very
challenging and it is not yet clear if they are viable op-
tions at the LHC.

There are also indirect approaches such as using mea-
surements of the electric dipole moment [37, 38] which
place severe constraints on the amount of CP violation
allowed in the Higgs to photon couplings. Even these
however rely on (perfectly reasonable) theory assump-
tions, such as what the scale of new physics is, and that
the Higgs has direct couplings to light fermions. Such
couplings to light fermions have yet to be measured and
perhaps will not be for some time. In fact, it was shown
that these constraints can be evaded completely in simple
specific models [37]. It would thus be satisfying to have
a direct probe of these couplings which does not rely on
such assumptions. Furthermore, these measurements are
unable to determine the overall sign (or phase) of the
effective Higgs γγ coupling. This makes the golden chan-
nel perhaps the unique method of directly probing the CP
properties, including the overall sign, of the Higgs cou-
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plings to photons with current experimental technology
and without theoretical assumptions.

Using a maximum likelihood analysis based on an an-
alytic framework developed in [31], we perform a simul-
taneous parameter extraction of the loop induced ZZ,
Zγ, and γγ effective Higgs couplings allowing for gen-
eral CP odd/even mixtures. We perform these fits for
a range of numbers of events assuming a pure SM data
set. We find that for values of couplings close to those
predicted by the SM, the golden channel has excellent
prospects to begin directly probing the Higgs couplings
to photons during LHC running with ∼ 100 − 400fb−1

of luminosity (depending on detector performance and
production uncertainties) with less optimistic prospects
for the Zγ and even less so for the loop induced ZZ cou-
plings. Our analysis is done at generator level neglecting
any detector effects as well as any backgrounds but as
we discuss further below, this is not expected to affect
our results dramatically or change our conclusions qual-
itatively [31, 32].

The results presented here motivate a detailed loop
analysis in order to make more precise quantitative
statements about the ability to extract these parame-
ters. They also suggest exciting potential for the golden
channel to discover new physics which may enter in the
loops that generate these effective couplings. We leave
a careful study of these issues to ongoing and future
work [32, 39]. For now we simply demonstrate qualita-
tively that the LHC has excellent prospects to establish
the CP nature of the Higgs couplings to photons, includ-
ing the overall sign, well before the end of high luminosity

LHC running. (∼ 3 ab−1).
This paper is organized as follows: In Secs. II we dis-

cuss the parameterization of the various tensor couplings
which we will be fitting for as well as other aspects of
searching for anomalous couplings with the golden chan-
nel. In Sec. III we present our results where we estimate
the expected sensitivity of the golden channel to each
of the loop induced effective Higgs couplings to ZZ, Zγ,
and γγ pairs. Finally in Sec. IV we discuss briefly ongoing
and future work before concluding.

II. EXAMINING THE GOLDEN CHANNEL

In this section we examine various aspects of the
golden channel. We begin by parametrizing the Higgs
couplings to ZZ, Zγ, and γγ pairs. We then discuss some
of the observables which enable us to have sensitivity to
these couplings and the different terms which contribute
to the differential cross section. We also examine the
magnitude of the effects of loop induced couplings and
discuss the interference effects.

A. Higgs Couplings to EW Bosons

We consider the leading contributions to the Higgs cou-
plings to neutral electroweak gauge bosons allowing for
general CP odd/even mixtures as well as for ZZ, Zγ
and γγ to contribute simultaneously. These couplings are
parametrized by the following Lagrangian,

L ⊃ h

4v

(
2AZZ1 m2

ZZ
µZµ +AZZ2 ZµνZµν +AZZ3 ZµνZ̃µν

+ 2AZγ2 FµνZµν + 2AZγ3 FµνZ̃µν + Aγγ2 FµνFµν +Aγγ3 Fµν F̃µν

)
, (1)

where we have taken h real. We consider only up to di-
mension five operators and Zµ is the Z field while Vµν =
∂µVν − ∂νVµ is the usual bosonic field strengths. The

dual field strengths are defined as Ṽµν = 1
2εµνρσV

ρσ. All

of the couplings are taken to be real1, dimensionless, and
constant. In principal they are form factors whose loop
functions have potentially strong momentum dependence
due to the highly off-shell nature of the intermediate vec-
tor bosons. This is true even in the SM where at tree level
the only contribution is AZZ1 , but at one loop momentum
dependent form factors of O(10−2 − 10−3) are generated

for the AZZ,Zγ,γγ2 operators [40, 41] by loops of SM par-

1 Our framework can easily accommodate complex couplings, but
we expect any phases to be small [35] and their inclusion is not
necessary in order to make our point.

ticles (AZZ,Zγ,γγ3 are also generated at higher loop order,
but these are totally negligible in comparison).

However, since we only aim to give a qualitative pic-
ture of the sensitivity and not a precise extraction of
these parameters, for the purposes of this study we work
within Higgs effective theory and approximate the cou-
plings as constant, as is done in other similar analy-
ses [13, 17, 21, 24, 28, 31, 32, 42]. Once sensitivity of
O(10−2 − 10−3) is achieved a more precise quantifica-
tion will require accounting for the full momentum de-
pendence, but we leave this to future work. Thus for
the remainder of this study we define as the SM point
AZZ1 = 2 and take all other couplings ∼ 0. The pur-
pose of this study is then to estimate at what point the
golden channel will reach sensitivities of O(10−2− 10−3)
to the loop induced couplings assuming the ‘true’ value
of these couplings is that predicted by the SM (or close to
it). Achieving this level of sensitivity is exciting not only
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because one would begin probing SM loop effects, but
also because of the potential for discovering new physics
in deviations from the SM expectation including the pos-
sibility of observing CP violation.

B. The Fully Differential Decay Rate

We have analytically computed and validated the fully
differential decay width for h→ 4` for the 2e2µ [24], 4e,
and 4µ [31] final states assuming on-shell decay of the
Higgs. All interference effects between the operators in
Eq.(1) as well as identical final state interference in the
case of 4e and 4µ have been included.

For the purpose of our analysis it is useful to note that
the fully differential decay width for h → 4` is a sum
over terms quadratic in the couplings which we can write
schematically as,

dΓh→4`

dO
∼
∑

AinA
j∗
m ×

dΓ̂ijnm
dO

, (2)

where the sum is over n,m = 1, 2, 3 and i, j = ZZ,Zγ, γγ

(note AZγ1 = Aγγ1 = 0). We also define dO = dM2
1 dM

2
2 d
~Ω

which represents the differential volume element, or
phase space, in terms of two invariant masses correspond-
ing to the two lepton pairs (M1,M2) and five angles

(~Ω) [31, 32] (two of the angles correspond to an overall ro-
tation in the Higgs frame and are not useful for resolving
Higgs couplings). It will also be useful to define,

dΓijnm
dO

≡ AinAj∗m ×
dΓ̂ijnm
dO

. (3)

These differential distributions are going to be helpful in
the following discussion and it will be convenient to give
them names. As they sum up to give the differential rate,
we will call dΓijnm/dO a differential sub-rate.

It is further useful to note that sub-rates fall into two
categories - squared terms for which n = m and i =
j, and the interference terms for which this is not the
case. The squared terms are positive definite, while the
interference terms may be both positive and negative. In
fact, the interference terms between CP odd and CP even
operators must integrate to zero over all of phase space
and thus must take on both signs.

C. Sub-leading Couplings in h→ 4`:
Yesterday’s Signal = Today’s Background

In this work we focus on the question - to what de-
gree is h → 4` sensitive to the small higher-dimensional

couplings AZZ2,3 , AZγ2,3, and Aγγ2,3 in Eq.(1)? For the pur-
pose of this question we can think of the dominant decay
h → ZZ → 4` via AZZ1 as the background.2 The small

2 Of course, there are also true SM backgrounds contributing to
pp → 4l, but these are relatively small and will not change our

deviations in the fully differential cross-section caused by
the presence of higher dimensional operators Ai2,3 are our
signal. The various signal sub-rates are correlated in the
sense that turning on a squared sub-rate inevitably leads
to the presence of an interference term, and vice versa.

There are a few qualitative factors that are important
in determining whether the differential h → 4` rate is
sensitive to the loop induced couplings, i.e. our signal:

• Shapes: To what degree do the multi-dimensional
distributions dΓijnm/dO in equation (3) for our sig-
nal differ from the distribution predicted by the
AZZ1 background? A bigger difference in shape will
lead to better sensitivity.

• The total sub-rates: Irrespective of the size of the
couplings Ain, what are the sizes of the differential

sub-rates dΓ̂ijnm/dO which contribute to the total
h → 4` differential decay rate? Sensitivity will be
enhanced to couplings with larger sub-rates.

• Interference: Given particular values for the loop
induced Ain couplings, are the dominant signal sub-
rates coming from one of the squared terms or from
interference? This will determine the progression of
the sensitivity with the growing luminosity since
the former is quadratic in the coupling while the
latter is linear.

In the next subsections we will consider these factors in
more detail. First we examine the shapes of the differen-
tial sub-rate with respect to the invariant masses. Then
we will examine the size of the various sub-rates before
discussing the interference effects. These studies will help
us understand the results of our full likelihood analysis
and the progression of sensitivity with luminosity which
will be shown in Sec III.

D. The Differential Mass Spectra

The power of the golden channel comes from the large
number of observables available in the 4` final state and
their correlations which provide a vast amount of in-
formation. Focusing on only decay observables and tak-
ing the Higgs mass as input, we have the two invariant
masses, corresponding to the two lepton pairs, and three
angles of relevance as discussed above (see [31, 32] for
more details). The shapes of the distributions, dΓijnm/dO
in Eq.(3), are in general quite different for the various
ZZ, Zγ and γγ contributions allowing for strong dis-
criminating power between the different possible opera-
tors. This means that even if the overall h → 4` rate
is consistent with the SM prediction one can still have
contributions from new physics which can be uncovered

results qualitatively [24, 31, 32]. They are henceforth ignored in
this work but should be part of a more complete analysis.
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in the differential distributions. In terms of the SM this
translates to saying that even though Ai2,3 contribute
negligibly to the overall rate in principal the golden chan-
nel still can have sensitivity to these loop induced cou-
plings.

We can get a sense for the shape differences in these
distributions by examining the differential spectra for
the two invariant masses obtained via integration of
Eq.(3) over all angles and one invariant mass. The in-
variant masses serve as the most strongly discriminating
variables between the different operators. By examining
their distributions we can thus get a good qualitative
picture of the relative sensitivity to the various oper-
ators. These are presented in Fig. 1 for the 2e2µ final
state where we show the distributions for the invariant
mass which reconstructs closest to the Z mass which we
call M1 and the ‘off-shell’ invariant mass which we call
M2. We show the distributions (all normalized to one)
for the four CP even operators squared corresponding to

|AZZ1 |2, |AZZ2 |2, |AZγ2 |2, and |Aγγ2 |2. One can see that for
both the M1 and M2 distributions, the shape of |Aγγ2 |2
(green) is the operator most easily distinguished from
the |AZZ1 |2 ‘background’ (black). The next most distin-

guishable operator, mostly in M2, is |AZγ2 |2 (orange) fol-
lowed by |AZZ2 |2 (blue) which as expected most closely
resembles the |AZZ1 |2 background. The shapes for the CP
odd squared terms follow a similar pattern and are thus
not shown. Though we do no show it here, we note that
the relative azimuthal angle between the lepton decay
planes is useful for resolving CP even and CP odd oper-
ators [12, 24] (as is M2 [19, 24]).

E. Interference in the Golden Channel

A second advantage of the golden channel is its sen-
sitivity to interference which means that we are probing
effects which are linear in Ai2,3 in addition to the squared

terms |Ai2,3|2. This makes the golden channel sensitive to
the CP properties of the couplings as well as their overall
sign. This is a feature not present, for example, in h→ γγ
rate measurements which are sensitive only to the com-
bination |Aγγ2 |2 + |Aγγ3 |2 [35]. We can get a feel for the
effects of this interference by again examining the M1 and
M2 distributions, but this time for the interference be-
tween the higher dimensional operators Ai2,3 and the tree

level operator AZZ1 . These are shown in Fig. 2. As men-
tioned previously these distributions can take on both
positive and negative values. For those shown in Fig. 2
we have normalized them such that when integrated over
the invariant mass we obtain positive one. Again we have
plotted on top of the |AZZ1 |2 background (black). We see
a similar pattern of discrimination as that found for the
squared terms in the sense that γγ is most easily distin-
guished from the background followed by Zγ and then
ZZ.

We note that it is not just interference with the SM
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FIG. 1. Top: The differential mass spectrum for M1 in the
2e2µ final state for the CP even terms squared plotted on
top of the SM ‘background’ shown in black. Bottom: The
differential mass spectrum for M2 in the 2e2µ final state for
the same combination of operators. To obtain the spectra we
have performed the integration over the full angular phase
space analytically and restricted to the range 50 ≤ M1 ≤
120 GeV and 12 ≤ M2 ≤ 60 GeV with no other cuts and
normalized them to one.

that is important to consider if one is to avoid a bias
during the parameter extraction procedure. The differ-
ent squared terms as well as all other possible interference
terms among the loop induced operators are also impor-
tant to include. This is especially true with small data
sets where fluctuations in the data can be mistaken for
large anomalous Higgs interactions including subtle in-
terference effects between the various operators. We can
gain further insight of this behavior and the possible in-
terference effects by examining the total size of each pos-
sible combination of operators which we now discuss.

F. The Integrated Magnitudes

Upon integration of Eq.(3) over the full phase space
we can obtain the total sub rates for each combination
of AinA

j∗
m couplings as follows,

Γijnm = AinA
j∗
m ×

∫
dΓ̂ijnm
dO

dO (4)
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FIG. 2. Top: The differential mass spectrum for M1 in the
2e2µ final state for the CP even interference with the SM oper-
ator AZZ1 . The SM ‘background’ is again shown in black. Bot-
tom: The differential mass spectrum for M2 in the 2e2µ final
state for the same combination of operators. The cuts are
identical to those in Fig. 1 and we have normalized the dis-
tributions to positive one.

Thus we can think of Γijnm as the total ‘decay width’ for
the corresponding pair of operators, though again these
can be negative for certain combinations of operators and
so are not strictly speaking total decay widths. Some of
these interference terms are exactly zero in the case where
one has a CP even operator mixing with a CP odd oper-
ator, i.e. CP violation. This is just representative of the
fact that the overall h → 4` rate is not sensitive to CP
violation though of course this does not mean that the
golden channel is not sensitive to this effect.

It is therefore more illuminating to show what we call
the integrated magnitude of the various combination of
operators defined for each pair of couplings as,

Πij
nm = AinA

j∗
m ×

∫ ∣∣∣∣∣dΓ̂ijnm
dO

∣∣∣∣∣ dO, (5)

where the Πij
nm are strictly non-zero even in the case of

CP violation. We show in Fig. 3 all possible combina-
tions of Πij

nm for AZZ1 = 2 and all loop induced couplings
set to one. We have normalized to the (tree level) SM
value for the h → 4` decay width (ΓSM4` ) which cor-
responds to AZZ1 = 2 and all other couplings set to
zero. The values shown are for Πij

nm/Γ
SM
4` in the 2e2µ
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1 0.28 0.027 0.66 0.32 1.2 0.76

0.025 0.0051 0.091 0.023 0.15 0.035

0.0092 0.023 0.034 0.035 0.07

9.6 2.9 0.31 0.51

5.4 0.51 0.22

3 1.1

2.5

FIG. 3. The total integrated magnitudes, Πij
nm, defined in

Eq.(5), which correspond to the pairs of couplings AinA
j∗
m . To

obtain the values here we have set AZZ1 = 2 and all other cou-
plings to one. We have normalized to the (tree level) SM value
for the h→ 4` decay width. The values shown are for the 2e2µ
final state [31] for a ‘CMS-like’ phase space which is defined
in Sec. III A. These magnitudes are useful for estimating the
sensitivity in early stages of the analysis.

final state [31] with cuts and reconstruction correspond-
ing to a ‘CMS-like’ phase space [2] which we have defined
in Sec. III A. These integrated magnitudes contain infor-
mation not only about the total phase space contribution
of each combination of operators, but also about the dif-
ferences in shape. It is for this reason that one can have
non-zero values even for combinations of operators which
lead to CP violation.

We can see by examining the diagonal terms that the
largest integrated magnitudes are for the Zγ and γγ con-
tributions while the SM combination |AZZ1 |2 is equal to
one. This is due to a combination of the fact that in these
cases both gauge bosons can be more closely on-shell, as
well as the larger coupling of photons to leptons relative
to the Z couplings. These features contribute to the en-
hanced sensitivity to the Zγ and γγ couplings as we will
see in our results in Sec. III. In particular, this implies
that generically we expect a greater sensitivity to the Zγ
and γγ couplings than for the AZZ2,3 couplings, unless the
ZZ effective Higgs couplings, for some reason, are sub-
stantially larger than the Zγ and γγ couplings.

The values in Fig. 3 were obtained for all loop induced
couplings set equal to one. Of course in the SM and in
most new physics models we expect these couplings to be
. O(10−2 − 10−3) or much smaller. We therefore again
show Πij

nm/Γ
SM
4` for the 2e2µ final state in Fig. 4, but

now with AZZ1 = 2 and all loop induced couplings set to
∼ 0.008. We see again that the SM combination |AZZ1 |2
is equal to one (by definition). Of the others, the in-
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FIG. 4. The same as Fig. 3, but with AZZ1 = 2 and all
other couplings to ∼ 0.008. These values are useful to estimate
the sensitivities of the various terms at late stages of LHC
running. We see that interference terms with the SM (first
row) dominate over squared terms for all Ai2,3.

terference terms between the signal operators and AZZ1

dominate, with integrated magnitudes of ∼ 10−2− 10−3,
and much smaller magnitudes for terms that involve two
loop operators. These small magnitudes may give the im-
pression that there is no sensitivity in the golden channel
to couplings other than AZZ1 for parameter points ‘close
to’ the SM. However as the discussion in previous sec-
tions indicates, one has much more information in the
h → 4` fully differential decay width than just the inte-
grated magnitudes.

From our discussions of the integrated magnitudes and
differential spectra we naively expect that we should have
the strongest sensitivity to the γγ couplings followed by
the Zγ couplings and the weakest sensitivity to the loop
induced ZZ couplings. As we will show below, this indeed
turns out to be the case.

III. RESULTS

To obtain our results we use the machinery devel-
oped and described in detail in [31]. We will take the
SM tree level prediction of AZZ1 = 2 as input and fit
to the remaining six couplings simultaneously. Floating
all parameters simultaneously ensures that we account
for potentially important correlations between the vari-
ous couplings [31]. Note also that by fixing AZZ1 = 2 we
are implicitly fitting to ratios of couplings and taking the
overall normalization as input since it can be obtained
from measurements of the total rate. This also serves to
minimize the dependence of our results on any produc-
tion effects we have neglected.

For all of our results we combine the 2e2µ, 4e, and
4µ channels by computing the fully differential decay
width for each final state [24, 31] (including identical fi-
nal state interference for 4e and 4µ) and combining them
into one likelihood. The data sets which we fit to are gen-
erated from these expressions and contain a mixture of
all three final states whose proportions are determined
by the overall normalization of the differential widths for
each channel. Though we do not examine this issue here,
we note that the three channels do not possess the same
sensitivity. We leave a detailed examination of this inter-
esting point to an ongoing followup study [43].

A. Fit and Phase Space Definition

We define our six dimensional parameter space as,

~A = (AZZ2 , AZZ3 , AZγ2 , AZγ3 , Aγγ2 , Aγγ3 ). (6)

To estimate the sensitivity we obtain what we call an
‘effective’ σ or average error defined as [44],

σ =

√
π

2
〈|Â− ~Ao|〉, (7)

where Â is the value of the best fit parameter point ob-
tained by maximization of the likelihood with respect

to ~A. Here ~Ao represents the ‘true’ value with which our
data sets are generated. The average error is then found
by conducting a large number of pseudoexperiments with
a fixed number of events and obtaining a distribution for
Â which will have some spread centered around the av-
erage value. We then translate the width of this distri-
bution into our effective σ which converges to the usual
interpretation of σ when the distribution for Â is per-
fectly gaussian. We repeat this procedure for a range of
fixed number of signal events to obtain σ as a function
of number of signal events NS .

We take the Higgs mass to be mh = 125 GeV and limit
our phase space to approximate the cuts used by CMS
as indicated by following cuts and reconstruction:

• pT` > 20, 10, 7, 7 GeV for lepton pT ordering,

• |η`| < 2.4 for the lepton rapidity,

• 40 GeV ≤M1 and 12 GeV ≤M2.

Here M1 and M2 are the reconstructed masses of the two
lepton pairs. In reconstructing M1 and M2 we always
impose M1 > M2 and take M1 to be the reconstructed
invariant mass for a particle and anti-particle pair which
is closer to the Z mass. Note however that two other
lepton pairings are possible and equally valid, but we
leave an exploration of these alternate reconstructions
to ongoing work [43]. For further details on the fitting
(maximization) procedure and on the statistical analysis
see [31, 32].
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B. Sensitivity as Function of Number of Events

Using the definition in Eq.(6) we fit to a ‘true’ param-
eter point,

~Ao = (0, 0, 0, 0, 0, 0), (8)

where we allow all six parameters in ~A to float simultane-

ously in the fit. The ‘true’ point ~Ao in Eq.(8) is roughly
the prediction of the SM until getting to a precision of
O(10−2−10−3) so it serves as a good ‘bench mark’ point
for us to estimate the sensitivity to the various couplings.
In Fig. 5 we show the result for σ vs NS for the six param-

SN

)ij n
(Aσ
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-110

1

10

)-1 (fbε × 14 TeVL

10 210 310 410

210 310 410 510

Projected final LHC luminosity

    ZZ
2A

    ZA
2A

    AA
2A

    ZZ
3A

    ZA
3A

    AA
3A

FIG. 5. The results for the effective σ, or average error de-
fined in Eq.(7), of each coupling as a function of the num-
ber of signal events NS . Error bars are shown, but they are
smaller than the dot sizes. We combine the 2e2µ, 4e, and 4µ
channels in the data set and our likelihood. On the top axis
we also show an approximate projection for the luminosity
× efficiency needed at the LHC to obtain a given number of
signal events. The vertical gray dashed line indicates a rough
estimate for the final LHC luminosity which will be achieved
(∼ 3000fb−1) using production cross section and branching
fraction values obtained from the LHC Higgs Cross Section
Working Group [45, 46]. We indicate by the green dashed line
the value ∼ 0.008 corresponding roughly to the magnitude
of Aγγ2 predicted by the SM at 125 GeV. All couplings are
floated simultaneously and defined in Eq.(1).

eters defined in Eq.(1). Since all parameters are floated
simultaneously these sensitivity projections include all
correlations between the various couplings. We indicate

by the green dashed line the value ∼ 0.0083 which we use
as an approximate threshold for the necessary sensitivity
to begin to probe these couplings in the SM. On the top
axis we also show an estimate for the expected LHC lu-
minosity multiplied by efficiency while the vertical gray
dashed line indicates a rough estimate for the final LHC
luminosity which will be achieved (∼ 3000fb−1). We have
used production cross sections for both gluon fusion and
vector boson fusion as well as the h→ 4` branching frac-
tion values provided by the LHC Higgs Cross Section
Working Group [45, 46].

There are a number of interesting features to note in
these results. The first is the different slopes of the various
sensitivity curves for each coupling. These slopes can be
understood by recalling the tables of the integrated mag-
nitudes in Figs. 3 and 4. Looking at the Zγ curves we see
a bending shape not seen for the other couplings. This
bending comes from the interplay between effects which
dominate in two regimes. One is when the squared terms
drive the sensitivity (see Fig. 3). This occurs in the regime
of smaller data sets when fluctuations lead to larger val-
ues of the couplings to be extracted in the maximiza-
tion procedure, i.e. larger errors. Since the fluctuations
of the ‘true’ model (the SM with AZZ1 = 2 in this case)
go like N−1/2 this implies that when the squared terms

dominate we expect |AZγ2,3|2 ∼ N−1/2 which means that
the average error for the Zγ couplings then scales like

σ(AZγ2,3) ∼ N−1/4.
The second regime occurs for larger data sets where

smaller fluctuations allow for smaller values (closer to
zero for the true SM point) of the loop induced couplings
to be extracted. Here we expect the interference terms
with the SM to dominate (see Fig. 4). Thus, now we have

AZZ1 ×A
Zγ
2 = 2×AZγ2 ∼ N−1/2 ⇒ σ(AZγ2,3) ∼ N−1/2. The

detailed shape of the curves will depend on where the
transition from one regime to the other occurs. For the
Zγ couplings this transition occurs later at larger event
counts because of the large size of the squared terms to
begin with (see Fig. 3). For the ZZ and γγ couplings this
transition occurs much earlier at smaller data sets and is
therefore ‘hidden’ in the highly non-gaussian region of
low event count. Thus for the ZZ and γγ couplings the

regime of σ(AZZ,γγ2,3 ) ∼ N−1/2 begins much sooner and we
have the scaling observed in Fig. 5. Note however, that
these considerations only describe the dominant behavior
and the precise shape in the end is determined by the net
effect of all possible contributions.

The next feature to note in Fig. 5 is that the sensitiv-
ity to the γγ couplings is significantly greater than for
Zγ and even more so than for ZZ. This was to be ex-
pected from our considerations of the differential spectra
in Sec. II D as well as integrated magnitudes defined in
Eq.(5). In fact we see that for the γγ couplings, σ(Aγγ2,3)

3 This corresponds to the magnitude of Aγγ2 predicted by the SM
at 125 GeV for on-shell external photons [47].



8

reaches values . O(10−2) at around & 800 events which
corresponds to roughly 100fb−1 of luminosity assum-
ing 100% efficiency. Of course in reality the efficiency
is much lower than this and there are large uncertain-
ties on the production cross section, but conservatively
we estimate this number of events can be reached with
∼ 300 − 400fb−1 after accounting for detector and pro-
duction effects. The level of precision reached in the γγ
couplings with ∼ 800 events starts to become of the same
order or smaller than the O(10−2 − 10−3) loop effects
which generate Aγγ2 in the SM. It is quite remarkable
that the LHC will likely reach this level of sensitivity in
the Higgs couplings to photons, perhaps even before a
high luminosity upgrade.

Of course it is around this level of precision that loop
momentum effects start to become important. The off-
shell nature of the intermediate vector bosons means
these loop momentum effects could be sizable when ap-
proaching this level of precision. In addition there are de-
tector and production effects which must be accounted
for before a more precise quantification can be given. The
framework for achieving this task has been developed
in [32] and is also being developed further as part of on-
going work [48].

C. Establishing the hγγ CP Properties

The results shown in Fig. 5 indicate that the golden
channel should be able to establish the CP nature and
overall sign of the Higgs couplings to photons for cou-
plings roughly of the same size as those predicted by the
SM. To explore this further we perform a second param-
eter extraction This time to the ‘true’ point given by,

~Ao = (0, 0, 0, 0,−0.008, 0), (9)

again allowing all couplings to float. We have chosen
Aγγ2 = −0.008 which is the value of predicted by the SM
at 125 GeV for on-shell external photons [47]. Though in
the golden channel the photons are off-shell we consider
this a sufficient approximation for present purposes.

We first show in Fig. 6 results for the distribution of ex-
tracted Aγγ2 as a function of the numbers of events for 25
to 51200 signal events per pseudoexperiment. Although
we only show the distribution for Aγγ2 , all parameters
in Eq.(6) are floated in the fit and thus Fig. 6 contains
all the correlations between the various parameters. The
true value of Aγγ2 = −0.008 is shown by the black solid
line while zero is given by the dashed line. The colors in-
dicate the density of pseudoexperiments which return a
particular value of Aγγ2 with red being high density and
blue being low. We see clearly that the fit is sensitive to
the sign of Aγγ2 .

A further demonstration of the ability of the golden
channel to extract the CP properties of the Higgs cou-
plings to photons is shown in Fig. 7. We show the re-
sults for a large set of pseudoexperiments each containing
12800 events. This corresponds roughly to an integrated

SN

25 50 100 200 400 800 1600 3200 6400 12800
25600

51200

AA 2
A
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-0.05

0

0.05

0.1

-310
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FIG. 6. The distribution of extracted Aγγ2 as a function of the
number of events for 25 to 51200 signal events per pseudoex-
periment for the ‘true’ point defined in Eq.(9). The true value
Aγγ2 = −0.008 is shown by the black solid line while zero is
shown by the dashed black line. The colors indicate the den-
sity of pseudoexperiments which return a particular value of
Aγγ2 with red being high density and blue being low. Note
that although we only show Aγγ2 , all parameters in Eq.(6) are
floated in the fit. Again we combine the 2e2µ, 4e, and 4µ
channels in the data set and our likelihood.

luminosity of 3000fb−1 assuming a uniform efficiency of
60% for all three final states. We show fit results in the 2D
plane for Aγγ2 vs Aγγ3 where the turquoise circles corre-
spond to the 68% and 95% confidence intervals obtained
in our fit. The pink ring indicates the projected 1σ con-
fidence interval which will be achieved in the h→ γγ de-
cay channel [49] for the same luminosity. The pink ring
makes it clear that the h → γγ process is only sensitive
to the combination |Aγγ2 |2 + |Aγγ3 |2 and thus can not di-
rectly probe the CP nature of these couplings. We also
show in the thin green line the very strong, but highly
model dependent, constraint coming from the electron
EDM [37, 38]. For this constraint we have assumed the
couplings of the Higgs to first generation fermions is of or-
der their SM value and that the mass of the states which
generate these operators is a ∼ TeV. However, the green
line makes it clear that even with these model dependent
assumptions, EDM measurements can not establish the
overall sign of the Higgs photon coupling.

We see very simply from Fig. 7 that by the end of run-
ning, the LHC should be able to establish the CP nature
of the Higgs to photon couplings in the golden channel
and in particular be able to determine the overall sign of
the Aγγ2 coupling. As can also be seen from Fig. 7 this
is something that can not be unambiguously established
using the h→ γγ channel and EDM measurements. This
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FIG. 7. The results of our parameter extraction for the
true ‘SM-like’ point represented by the star and defined in
Eq.(9). We combine the 2e2µ, 4e, and 4µ channels in the data
set and our likelihood. The fit is performed for NS = 12800
events which roughly corresponds to the projected final LHC
luminosity of ∼ 3000fb−1 and assumes a uniform efficiency
of ∼ 60% for all three final states. We show fit results for
Aγγ2 vs Aγγ3 (floating all couplings). The turquoise circles cor-
respond to the 68% and 95% confidence interval obtained in
the golden channel while the pink ring indicates the projected
1σ confidence interval which will be achieved in h → γγ [49]
for the same luminosity. The thin green line shows the se-
vere constraint coming from the electron EDM in a minimal
model where the mass of the states which generate these oper-
ators is a TeV and that the Higgs couplings to first generation
fermions are of order their SM value [37, 38]. This constraint
can be completely relaxed in other models [37].

makes the golden channel the unique method capable of
determining these properties in the foreseeable future.

D. Comments on Results and Approximations

Of course the results we have presented in this study
are the ideal case. We have used simply the LO fully
differential cross section for h → 4` and performed
fits to data generated from the analytic expression it-
self. There are a number of additional effects we ne-
glected including production, background, and NLO de-
cay effects [40, 41]. However, all of these effects which
we have neglected are sub dominant [24, 31, 32] and do
not become important until we begin to reach the level
of sensitivity needed to measure the SM prediction for
the effective Higgs couplings. Thus they do not qualita-
tively change the results presented here and in particu-
lar the conclusion that the LHC has excellent prospects

of directly establishing the CP properties of the Higgs
coupling to photons. To make more precise statements a
more detailed framework is needed which includes these
various effects. We believe much progress can be made
on all of these aspects and that sensitivity closely ap-
proximating Figs. 5-7 can be achieved during LHC run-
ning. We leave a study of all of these effects to ongo-
ing work [39, 43] building on the framework introduced
in [24, 31, 32].

IV. CONCLUSIONS

We have examined the expected sensitivity of the
h → 4` golden channel to the loop induced couplings
of the Higgs boson to ZZ, Zγ, and γγ gauge boson pairs
for values approximating those predicted by the Stan-
dard Model. We have demonstrated qualitatively that the
golden channel has excellent prospects of directly estab-
lishing the CP nature of the Higgs couplings to photons,
well before the end of LHC running, with less optimistic
prospects for the ZZ and Zγ loop induced couplings.

We emphasize that in obtaining our results we have
not attempted to optimize the analysis for sensitivity to
these couplings. As part of an ongoing investigation we
examine whether by altering the cuts and reconstruction
which are applied one can enhance the sensitivity even
more than what has been found here.

Even without optimizing our analysis we find that with
standard ‘CMS-like’ cuts and reconstruction and with
∼ 100 − 400fb−1 of luminosity the LHC will reach the
levels necessary to begin probing the loop induced Stan-
dard Model effects which generate the Higgs coupling to
photons. This of course warrants further study, but indi-
cates that the golden channel is capable of directly prob-
ing the CP properties of the Higgs couplings to photons,
including the overall sign, by the end of LHC running.

This measurement can not be made in the h → γγ
channel or in other indirect approaches without making
model dependent assumptions. This makes the golden
channel the unique method capable of determining these
properties in the foreseeable future and we encourage ex-
perimentalists at the LHC to carry out this measurement.
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